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Abstract

A theoretical approach to determine the tilting sti}ness of an elastic layer bonded between rigid plates is
presented and then applied to derive the formulae of tilting sti}ness for layers of in_nite!strip\ circular and
square shapes[ Based on two kinematics assumptions\ the governing equations for the mean pressure are
established from the equilibrium equations and the bulk modulus equation[ Satisfying the stress boundary
conditions\ the pressure functions are solved and the formulae for tilting sti}ness are derived[ The tilting
sti}nesses calculated from these formulae are extremely close to the results obtained from the _nite element
method for an extensive range of shape factor and Poisson|s ratio[ Þ 0888 Elsevier Science Ltd[ All rights
reserved[

0[ Introduction

The technique of laminated elastomeric bearing has many uses in structural design\ such as
thermal expansion bearings for highway bridges and isolated bearings to reduce seismic response
of buildings[ A laminated elastomeric bearing consists of sheets of elastomer bonded to interleaving
steel plates[ When an elastic layer is bonded between two rigid plates\ the restricted lateral expansion
of the bonded surfaces of the elastic layer results in higher compression sti}ness than an unbonded
elastic layer[ Thus\ laminated elastomeric bearing provides high vertical rigidity to sustain gravity
loading\ while still providing the same horizontal ~exibility of an unbonded elastomer[

Using approximate theoretical analyses\ Gent and Lindley "0848# derived the compressive
sti}ness of an incompressible elastic layer bonded between rigid plates for in_nite!strip shape and
circular shape[ Subsequently\ Gent and Meinecke "0869# extended this method to analyze the
compressive sti}ness and tilting sti}ness of incompressible elastic layers for square and other
shapes[ These approximate analyses are based on two kinematics assumptions and one stress
assumption\ which are "i# planes parallel to the rigid bonding plates before deformation remain
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planar after loading^ "ii# lines normal to the rigid bonding plates before deformation become
parabolic after loading^ "iii# the normal stress components in all three directions can be approxi!
mated by the mean pressure[ The solutions are obtained from the superposition of two stages] "i#
the elastic layer is _rst deformed between unbonded rigid plates^ "ii# shear stresses are then applied
to restore the top and bottom surfaces of the elastic layer to the bonded positions[

Although rubber can be treated as incompressible in some analyses\ the assumption of incom!
pressibility tends to overestimate the compressive sti}ness and tilting sti}ness of the bonded rubber
layer when the layer|s shape factor "de_ned as the ratio of the one bonded area to the force!free
area# is high[ Kelly "0882# developed a theoretical approach to derive the compressive sti}ness and
tilting sti}ness considering the e}ect of bulk compressibility[ Based on the above three assumptions
and two!stage deformations\ the relation between mean pressure and volume strain is reduced to
a partial di}erential equation of the pressure\ from which the compressive and tilting sti}nesses\
including the in~uence of volume change\ are derived[ The solutions\ referred to as {approximate
pressure| solutions here\ are available for the layers of in_nite!strip shape "Chalhoub and Kelly\
0880#\ circular shape "Chalhoub and Kelly\ 0889# and square shape "Koh and Kelly\ 0876#[ These
solutions are accurate for layers of high shape factor and a material of Poisson|s ratio between
9[38 and 9[4\ e[g[ rubber[

Lindley "0868a# applied an energy method to derive the compressive sti}ness of the in_nite!strip
and circular shapes as well as the tilting sti}ness of the in_nite!strip shape "Lindley\ 0868b#[ In
addition to the forementioned two kinematics assumptions\ he also postulated that the volume
strain has a parabolic distribution across the plane of the layer[ These solutions are accurate for
the material of any Poisson|s ratio[

The authors of this paper have developed a pressure approach to derive the compressive sti}ness
of a bonded elastic layer in in_nite!strip\ circular and square shapes "Tsai and Lee\ 0887#[ This
approach is a direct solution\ not a two!stage solution\ and relies on the only two kinematics
assumptions that horizontal planes remain planar and vertical lines become parabolic after loading[
Partial di}erential equations for the pressure are initially derived from the equilibrium equations
and the bulk modulus equation[ By satisfying the stress boundary conditions of the layers\ the
pressure functions are then solved\ from which the compressive sti}nesses are derived[ The derived
compressive sti}nesses are shown to be extremely close to the results of _nite element analysis for
any value of Poisson|s ratio and shape factor[ In this paper\ we apply the same pressure approach
to derive the tilting sti}ness of bonded elastic layer of in_nite!strip\ circular and square shapes and
compare the derived results with the _nite element solutions and the results published previously[

1[ Governing equations

A layer of linearly elastic\ homogeneous and isotropic material is bonded between two rigid
plates as shown in Fig[ 0[ A rectangular Cartesian coordinate system "x\ y\ z#\ is established by
locating the origin at the center of the layer and the xy plane in the middle plane of the layer[ The
layer has a thickness t and an area A[ Let u\ v and w represent the displacements in the x\ y and z
coordinate directions\ respectively[ As shown in Fig[ 1\ the top and bottom rigid plates rotate
about the y axis to form an angle f[ Because the surfaces of the layer are perfectly bonded to rigid
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Fig[ 0[ Elastic layer bonded between rigid plates[

plates\ the deformation of the elastic layer is symmetric to the xy plane[ The displacements are
assumed to have the form

u"x\ y\ z# � u¹"x\ y# 00−
3z1

t1 1−
0
1r

z1 "0#

v"x\ y\ z# � v¹"x\ y# 00−
3z1

t1 1 "1#

w"x\ y\ z# �
0
r

xz "2#

where r � t:f is the radius of curvature of the rotation[ Equations "0# and "1# satisfy the assumption
that the vertical lines become parabolic[ The last term in eqn "0# arises from the deformation of
pure bending[ Equation "2# represents the assumption that planes parallel to the rigid plates remain
planar[

Fig[ 1[ Deformed shape of a tilted layer[
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For an isotropic elastic material\ the mean pressure p has the following relation with dis!
placements

p"x\ y\ z# � −k"u\x¦v\y¦w\z# "3#

where k is the bulk modulus and the commas imply partial di}erentiation with respect to the
indicated coordinates[ The equilibrium equations in the x and y coordinate directions may be
combined "Tsai and Lee\ 0887# to become

"u\x¦v\y#\xx¦"u\x¦v\y#\yy¦"u\x¦v\y#\zz �
l¦m

mk
"p\xx¦p\yy# "4#

in which l and m are Lame�|s constants[ Substituting the displacement assumptions in eqns "0#Ð"2#
into eqns "3# and "4# and integrating the resulting equations through the thickness produces

u¹ \x¦v¹\y � −
2
1 0

x
r

¦
0
k

p¹1 "5#

and

1
2

ð"u¹ \x¦v¹\y#\xx¦"u¹ \x¦v¹\y#\yyŁ−
7

t1
"u¹ \x¦v¹\y# �

l¦m

mk
"p¹ \xx¦p¹ \yy# "6#

where p¹ is the e}ective pressure de_ned as

p¹"x\ y# �
0
t g

t:1

−t:1

p"x\ y\ z# dz "7#

The governing equation for the e}ective pressure is obtained by substituting eqn "5# into eqn "6#\

p¹ \xx¦p¹ \yy−1a1p¹ � 1a1 k

r
x "8#

in which a is de_ned as

a �X 5m

t1"l¦1m#
"09#

Equation "8# is solved by satisfying the boundary conditions so that the stresses are free on the
unbonded surfaces of the elastic layer[ In the {approximate pressure| solution\ the di}erential
equation is similar to eqn "8#\ but the coe.cient a is di}erent^ the boundary conditions are assumed
as p¹"x\ y# � 9 on the stress!free surfaces[

According to the elementary beam theory\ the e}ective tilting sti}ness of the layer is de_ned as

"EI#eff � r gA

s¹ zzx dx dy "00#

where the integration represents the total applied moment and s¹ zz is the e}ective vertical stress
de_ned as
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Fig[ 2[ Dimensions of an in_nite!strip layer[

s¹ zz �
0
t g

t:1

−t:1

szz dz "01#

Using the following stress expression for the vertical stress\

szz � −
l

k
p¦1mw\z "02#

the e}ective tilting sti}ness becomes

"EI#eff � 1mIy−
rl

k gA

xp¹"x\ y# dx dy "03#

where Iy � ÐA x1 dx dy is the moment of inertia of the cross!section area about the y axis[

2[ Layer of in_nite!strip shape

The in_nite!strip layer shown in Fig[ 2 has a width of 1b and a thickness of t[ The corresponding
shape factor is Si � b:t[ The moment of inertia for the unit length of strip is Ii � 1b2:2[ If the y
coordinate direction is attached to the in_nite!long side\ the displacement component v vanishes
and the layer is in plane!strain parallel to the xz plane[ The governing equation for the e}ective
pressure in eqn "8# becomes

p¹ \xx−a¹1p¹ �
0
r

a¹1kx "04#

in which a¹ satis_es the relation
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a¹b � 1SiX 2m

l¦1m
"05#

The normal stress sxx in the plane!strain state can be expressed "Tsai and Lee\ 0887# as

sxx � −
l¦1m

k
p−1mw\z "06#

By substituting the displacement assumption in eqn "2# into the above equation and integrating
the resulting equation through the thickness\ the boundary condition at x � b\ sxx � 9\ yields

p¹"b# � −
b
r 0

1mk

l¦1m1 "07#

Satisfying the above boundary condition\ the function p¹"x# can be solved from eqn "04#\ as below

p¹"x# � k
b
r $

l sinh "a¹x#
"l¦1m# sinh "a¹b#

−
x
b% "08#

Substituting the above equation into eqn "03# yields

"EI#eff
Ii

� 1m¦l $0−
l

l¦1m

2

"a¹b#1 0
a¹b

tanh "a¹b#
−01% "19#

which is a multiple of Young|s modulus E and also a function of Poisson|s ratio n and shape factor
Si[

Figure 3 plots the variation of the tilting sti}ness calculated from eqn "19# with respect to n for
Si � 1 and Si � 19[ Also plotted in the _gure is the _nite element solution where the in_nite!strip
layer is modeled by eight!node isoparametric plane!strain elements[ The _gure shows that the
tilting sti}ness calculated by eqn "19# is extremely close to the _nite element solution[

The formula derived by Lindley "0868b# for the tilting sti}ness of an in_nite!strip layer can be
expressed as

"EI#eff
Ii

�

F

G

G

j

J

G

G

f

1m¦l

K

H

H

k

0−
l

l¦1m

F

G

G

f

0−
"a¹b#1

04

0¦
0

109
"a¹b#1

0¦
0
09

"a¹b#1

J

G

G

j

L

H

H

l

for a¹b ¾ z04

1m¦l $0−
l

l¦1m 0
1[545
a¹b

¦
9[9425

"a¹b#1
−

8[641

"a¹b#2
¦

00[14

"a¹b#31% for a¹b × z04

"10#

This formula is similar to eqn "19# except for the function of a¹b in the parentheses[ Figure 3 shows
that the curve of eqn "10# is almost the same as the curve of eqn "19#[ However\ the expression in
eqn "19# is more compact that eqn "10#[

The {approximate pressure| solution derived by Chalhoub and Kelly "0880# is
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Fig[ 3[ E}ective tilting sti}ness of in_nite!strip layer[
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Fig[ 4[ Dimensions of a circular layer[

"EI#eff
Ii

� E¦k $0−
2

"a¼b#1 0
a¼b

tanh "a¼b#
−01% "11#

in which

a¼b � 1SiX 2m

k
"12#

As shown in Fig[ 3\ the {approximate pressure| solution is accurate only when the layer has high
shape factor and the material has Poisson|s ratio greater than 9[34[

If the layer|s material is nearly incompressible\ a¹b becomes in_nitesimal[ By applying the
following approximation

a¹b
tanh "a¹b#

¼ 0¦
0
2

"a¹b#1−
0
34

"a¹b#3 "13#

in eqn "19#\ the e}ective tilting sti}ness of incompressible material for the in_nite!strip layer is
obtained as

"EI#eff
Ii

� 3m 00¦
0
4

S1
i 1 "14#

3[ Layer of circular shape

The circular layer shown in Fig[ 4 has a radius of b and a thickness of t[ The corresponding
shape factor is Sc � b:"1t# and the moment of inertia for the circular area is Ic � pb3:3[ A cylindrical
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polar coordinate system "r\ u\ z# is established with the origin at the center of the layer[ The rigid
plates on the top and bottom of the layer rotate about the axis in the direction of u � p:1[ Denote
u\ v and w as the displacements along the r\ u and z directions\ respectively[ Applying coordinate
transformation\ the displacement assumptions in eqns "0#Ð"2# become

u"r\ u\ z# � u¹"r\ u# 00−
3z1

t1 1−
0
1r

z1 cos u "15#

v"r\ u\ z# � v¹"r\ u# 00−
3z1

t1 1¦
0
1r

z1 sin u "16#

w"r\ u\ z# �
0
r

rz cos u "17#

The expression of the mean pressure in the cylindrical coordinate system is

p"r\ u\ z# � −k 0u\r¦
u
r
¦

v\u

r
¦w\z1 "18#

The equilibrium equation in the r direction is

1 0u\rr¦
u\r

r
−

u

r11¦
0

r1
u\uu¦u\zz¦

0
r 0v\ru−

2
r
v\u1¦w\rz �

l

mk
p\r "29#

Substituting eqns "15#Ð"17# into eqns "18# and "29# and integrating the resulting equations through
the thickness leads to

u¹ \r¦
0
r
v¹\u¦

0
r
u¹ � −

2
1r

r cos u−
2
1k

p¹ "20#

and

u¹ \rr¦
0
r
u¹ \r−0

5

t1
¦

0

r11 u¹¦
0

1r1
u¹ \uu¦

0
1r

v¹\ru−
2

1r1
v¹\u �

2l

3mk
p¹ \r "21#

Di}erentiating eqn "20# with respect to r and subtracting the result from eqn "21# yields

5

t1
u¹−

0

1r1
u¹ \uu¦

0
1r

v¹\ru¦
0

1r1
v¹\u � −

2"l¦1m#
3mk

p¹ \r−
2
1r

cos u "22#

After taking coordinate transformation\ the governing equation for the e}ective pressure in eqn
"8# becomes

p¹ \rr¦
0
r
p¹ \r¦

0

r1
p¹ \uu−a¹1p¹ � a¹1 k

r
r cos u "23#

where a¹ satis_es the relation



H[!C[ Tsai\ C[!C[ Lee:International Journal of Solids and Structures 25 "0888# 1374Ð14941383

a¹b � 3ScX 2m

l¦1m
"24#

The e}ective pressure is symmetric to the r axis at u � 9 and antisymmetric to the r axis at u � p:1\
i[e[

p¹"r\ u# � p¹"r\ −u# � −p¹"r\ p−u# "25#

To satisfy the above conditions\ the solution of eqn "23# has the following expression

p¹"r\ u# � −
k

r
r cos u¦ s

�

n�0

AnI1n−0"a¹r# cos "1n−0#u "26#

where In is the modi_ed Bessel function of the _rst kind of order n and An is the constants to be
determined[ By taking coordinate transformation and applying eqn "26#\ the e}ective tilting
sti}ness in eqn "03# becomes

"EI#eff � Ic $l¦1m−A0

3lr

ka¹b1
I1"a¹b#% "27#

which indicates that\ to obtain the tilting sti}ness\ A0 is the only constant necessary to be solved[
The displacement u is symmetric and v is antisymmetric with respect to the r axis at u � 9[ Since

the e}ective pressure p¹ in eqn "26# is a cosine series\ eqn "20# implies that u¹ can be expressed as a
cosine series

u¹"r\ u# � s
�

n�0

u¹ "n#"r# cos "1n−0#u "28#

and v¹ as a sine series

v¹"r\ u# � s
�

n�0

v¹"n#"r# sin "1n−0#u "39#

where u¹ "n# and v¹"n# are the amplitudes of the nth term in u¹ and v¹\ respectively[ Substituting eqns
"26#\ "28# and "39# into eqn "20# yields

u¹ "0#
\r ¦

0
r
v¹"0#¦

0
r
u¹ "0# � −

2
1k

A0I0"a¹r# "30#

Similarly\ eqn "22# gives

−0
0

1r1
¦

5

t11 u¹ "0#−
0
1r 0v¹"0#

\r ¦
0
r
v¹"0#1�

2"l¦1m#
3mk

A0 $a¹I9"a¹r#−
0
r
I0"a¹r#%−

2l

3rm
"31#

The boundary conditions are r � b give

srr � −
l

k
p¦1mu\r � 9 "32#

and
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tru � m 0
u\u

r
¦v\r−

v
r1� 9 "33#

Substituted by eqns "15# and "16# and integrated through the thickness\ eqns "32# and "33# become

u¹ \r"b\ u# �
2l

3mk
p¹"b\ u# "34#

and

v¹\r"b\ u# �
0
b

ðv¹"b\ u#−u¹ \u"b\ u#Ł "35#

Substituting eqns "26#\ "28# and "39# into the above two equations yields

u¹ "0#
\r "b# �

2l

3mk
A0I0"a¹b#−

2lb
3mr

"36#

and

v¹"0#
\r "b# �

0
b

ðv¹"0#"b#¦u¹ "0#"b#Ł "37#

Since the rigid plates rotate about the r axis at u � p:1\ it is reasonable to assume v¹"b\ 2p:1# � 9
which indicates

v¹"0#"b# � 9 "38#

The expression of u¹ "0#"b# can be derived by substituting eqns "36# and "38# into eqn "30# for r � b[
Then\ by substituting u¹ "0#"b#\ v¹"0#"b# and v¹"0#

\r "b# into eqn "31# for r � b\ A0 is solved as

A0 �
13bklS1

c

r"l¦1m#ð1"0¦01S1
c #I0"a¹b#−a¹bI9"a¹b#Ł

"49#

Substituting the above equation into eqn "27# leads to

"EI#eff
Ic

� 1m¦l $0−0
1l

m 1
a¹bI9"a¹b#−1I0"a¹b#

1"0¦01S1
c #I0"a¹b#−a¹bI9"a¹b#% "40#

The variations of tilting sti}ness with respect to n\ as calculated from eqn "40#\ are compared
with the _nite element solution and the {approximate pressure| solution "Chalhoub and Kelly\
0889# in Fig[ 5 for Sc � 1 and Sc � 19[ In the _nite element analysis\ the circular layer is modeled
by eight!node solid elements with incompatible bending modes[ The _gure shows that the tilting
sti}ness calculated by eqn "40# is extremely close to the _nite element solution\ whereas the
{approximate pressure| solution is accurate only when the layer has high shape factor and Poisson|s
ratio greater than 9[34[

When the layer|s material is nearly incompressible\ a¹b tends to in_nitesimal and the following
function of a¹b in eqn "40# may be approximated by
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Fig[ 5[ E}ective tilting sti}ness of circular layer[
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Fig[ 6[ Dimensions of a square layer[

a¹bI9"a¹b#
1I0"a¹b#

¼ 0¦
0
7

"a¹b#1−
0

081
"a¹b#3 "41#

Consequently\ the e}ective tilting of incompressible material for the circular shape is

"EI#eff
Ic

� m"2[4¦1S1
c # "42#

4[ Layer of square shape

The elastic layer of square shape shown in Fig[ 6 has a side length of 1b and a thickness of t[
The corresponding shape factor is Ss � b:"1t# and the moment of inertia for the square shape is
Is � 3b3:2[ The boundary conditions at x � b give

sxx � −
l

k
p¦1mu\x � 9 "43#

and

txy � m"u\y¦v\x# � 9 "44#

Substituting eqns "0# and "1# into the above equations and integrating the results through the depth
yields
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p¹"b\ y# �
3mk

2l
u¹ \x"b\ y# "45#

and

u¹ \y"b\ y#¦v¹\x"b\ y# � 9 "46#

Similarly\ at y � b\ the boundary conditions

syy � −
l

k
p¦1mv\y � 9 "47#

and tyx � 9 leads to

p¹"x\ b# �
3mk

2l
v¹\y"x\ b# "48#

and

u¹ \y"x\ b#¦v¹\x"x\ b# � 9 "59#

The distribution of the e}ective pressure is derived by solving the partial di}erential equation
in eqn "8#[ The particular solution of eqn "8#\ p¹p\ is

p¹p � −
k

r
x "50#

while the complementary solution of eqn "8#\ p¹c\ is solved by the method of separation of variables[
By de_ning p¹c"x\ y# � XÞ"x#YÞ"y#\ the functions XÞ and YÞ must satisfy the following relation

XÞý−a1XÞ
XÞ

� −
YÞý−a1YÞ

YÞ
� C "51#

where C is a constant[ If p¹9\ p¹¦ and p¹− are denoted as the solution of p¹c when C � 9\ C × 9 and
C ³ 9\ respectively\ the complete solution of p¹ becomes

p¹"x\ y# � p¹p"x\ y#¦p¹9"x\ y#¦p¹¦"x\ y#¦p¹−"x\ y# "52#

When the rigid bonding plates rotate about the y axis\ the e}ective pressure acting on the square
layer is symmetric about the x axis and anti!symmetric about the y axis\ i[e[

p¹"x\ y# � p¹"x\ −y# � −p¹"−x\ y# "53#

By substituting eqn "45# at y � b and eqn "48# at x � b into eqn "5#\ the e}ective pressure on the
corner is found as

p¹"b\ b# � −
b
r 0

mk

l¦m1 "54#

If the following conditions on the corners are set
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p¹¦"b\ b# � p¹−"b\ b# � 9 "55#

eqns "54# and "50# imply

p¹9"b\ b# �
b
r 0

lk

l¦m1 "56#

The function p¹9"x\ y# can be solved by satisfying the conditions in eqns "53# and "56#

p¹9"x\ y# �
b
r 0

lk

l¦m1
sinh "ax# cosh "ay#
sinh "ab# cosh "ab#

"57#

To satisfy eqns "53# and "55#\ p¹¦ has the expression

p¹¦"x\ y# � s
�

n�0

An sinh "bnx# cos "gny# "58#

with

bn � z1a1¦g1
n^ gn �

"1n−0#p
1b

n � 0\ 1\\ [ [ [ \ � "69#

and p¹− has the expression

p¹−"x\ y# � s
�

n�0

AÞn sin "g¹nx# cosh "b¹ ny# "60#

with

b¹ n � z1a1¦g¹1
n^ g¹n �

np

b
n � 0\ 1\\ [ [ [ \ � "61#

where An and AÞn are the constants to be determined[
Consequently\ the e}ective pressure de_ned in eqn "52# has the following expression

p¹"x\ y# � k
b
r $−

x
b

¦
l

l¦m

sinh "ax# cosh "ay#
sinh "ab# cosh "ab#%

¦ s
�

n�0

ðAn sinh "bnx# cos "gny#¦AÞn sin "g¹nx# cosh "b¹ ny#Ł "62#

Substituting the above equation into eqn "03# produces

"EI#eff
Is

� 1m¦l−
2l1

l¦m $
ab−tanh "ab#

"ab#2 %¦
2l

k
s
�

n�0 $a¹n−an 00−
tanh "bnb#

bnb 1% "63#

where an is a multiple of An de_ned as
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an �
r

b
An

cosh "bnb# sin "gnb#
"bnb#"gnb#

"64#

and a¹n is a multiple of AÞn de_ned as

a¹n �
r

b
AÞn

sinh "b¹ nb# cos "g¹nb#
"b¹ nb#"g¹nb#

"65#

To _nd an and a¹n\ substitute the expression of p¹"b\ y# as obtained from eqn "62# into eqn "45# to
_nd u¹ \x"b\ y#[ Then\ substituting u¹ \x"b\ y# and p¹"b\ y# into eqn "5# with x � b produces

v¹\y"b\ y# �
2bl

3rm $0−0
l¦1m

l¦m 1
cosh "ay#
cosh "ab#%−

2"l¦1m#
3mk

s
�

n�0

An sinh "bnb# cos "gny# "66#

Also\ substituting the expressions of p¹"x\ b# as obtained from eqn "62# into eqn "48# produces

v¹\y"x\ b# �
2bl

3rm $−
x
b

¦0
l

l¦m1
sinh "ax#
sinh "ab#%¦

2l

3mk
s
�

n�0

AÞn cosh "b¹ nb# sin "g¹nx# "67#

Equations "66# and "67# indicate

v¹\y"x\ y# �
2bl

3rm $−
x
b

¦1
sinh "ax#
sinh "ab#

−0
l¦1m

l¦m 1
sinh "ax# cosh "ay#
sinh "ab# cosh "ab#%

−
2"l¦1m#

3km
s
�

n�0

An sinh "bnx# cos "gny#¦
2l

3mk
s
�

n�0

AÞn cosh "b¹ ny# sin "g¹nx# "68#

The expressions for v¹"x\ y# can be derived by integrating the above equation with respect to y and
applying the condition v¹"x\ 9# � 9[

By substituting the derived v¹"x\ y# and p¹"x\ y# in eqn "62# into eqn "5#\ the expression for u¹ \x"x\ y#
is derived and then is integrated with respect to x to obtain

u¹"x\ y# �
2b
3mr $

x1

1b
−

1 cosh "ax#
a sinh "ab#

¦0
l

l¦m1
cosh "ax# cosh "ay#
a sinh "ab# cosh "ab#%

¦
2l

3mk
s
�

n�0 $
An

bn

cosh "bnx# cos "gny#¦0
l¦1m

l 1
AÞn

g¹n

cos "g¹nx# cosh "b¹ ny#%¦f "y# "79#

where f "y# represents a function of y\ which can be determined by assuming that the layer|s edge
at x � b remains straight after deformation\ i[e[\ u¹"b\ y# is a constant value independent of y[

Substituting the derived expressions of u¹"x\ y# and v¹"x\ y# into eqn "46# produces

l¦1m

k
s
�

n�0 $An

bn

gn

cosh "bnb# sin "gny#%−
l

k
s
�

n�0 $AÞn

g¹n

bÞn

sinh "b¹ ny# cos "g¹nb#%
�

lb
r $−

y
b

¦
1ay

tanh "ab#
−0

l¦1m

l¦m 1
sinh "ay#
sinh "ab#% "70#
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Multiplying both sides of the above equation by sin "gmy# and integrating from y � −b to y � b
gives

am � s
�

n�0

Fmna¹n¦fm m � 0\ 1\ [ [ [ \ � "71#

in which

Fmn � 0
1l

l¦1m1
"g¹nb#1"b¹ nb#

"bmb#1ð"b¹ nb#1¦"gmb#1Ł tanh "b¹ nb#
"72#

and

fm � 0
1kl

l¦1m1 $
ab

tanh "ab#%
0

"bmb#1"gmb#1 &0−
tanh "ab#

ab
¦

0

0¦0
ab
gmb1

1 00
ab
gmb1

1

−
m

l¦m1' "73#

Similarly\ substituting the derived expressions of u¹"x\ y# and v¹"x\ y# into eqn "59# produces

s
�

n�0

An sin "gnb# $
gn

bn

cosh "bnb#−0
gn

bn

¦
l¦1m

l

bn

gn1 cosh "bnx#%
− s

�

n�0

AÞn sinh "b¹ nb# $
l¦1m

l

b¹ n

g¹n

cos "g¹nb#−0
g¹n

b¹ n

¦
l¦1m

l

b¹ n

g¹n1 cos "g¹nx#%
�

b
rk $

1m

l¦m

cosh "ax#
cosh "ab#

−1ab
cosh "ax#
sinh "ab#

¦
1l¦m

l¦m % "74#

Multiplying both sides of the above equation by cos "g¹mx# and integrating from x � −b to x � b
gives

a¹m � s
�

n�0

Gmnan¦`m m � 0\ 1\ [ [ [ \ � "75#

in which

Gmn �
1

"bnb#1¦"g¹mb#1

K

H

H

H

H

k

"gnb#1¦00¦
1m

l 1 "bnb#1

"g¹mb#1¦00¦
1m

l 1 "b¹mb#1

L

H

H

H

H

l

bnb
tanh "bnb#

"76#

and
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`m �
−3k

"g¹mb#1¦00¦
1m

l 1 "b¹mb#1
$

"ab#1

"g¹mb#1¦"ab#1% $0−
m

l¦m

tanh "ab#
ab % "77#

Approximated values of an and a¹n may be solved from eqns "71# and "75# if a _nite upper bound
of m and n\ say k\ replaces the in_nity in these equations[ Denote a and a¹ be the vectors formed
by an and a¹n\ respectively\ of the _rst k terms[ Equations "71# and "75# can be replaced by matrix
forms

a � Fa¹¦f "78#

a¹ � Ga¦g "89#

where F and G are the matrices of k×k in which the elements Fmn and Gmn are de_ned in eqns "72#
and "76#\ respectively^ f and g are the k dimensional vectors in which the elements fm and `m are
de_ned in eqns "73# and "77#\ respectively[ From eqns "78# and "89#\ a and a¹ are solved as

a � "I−FG#−0"Fg¦f# "80#

and

a¹ � G"I−FG#−0"Fg¦f#¦g "81#

where I is the unit matrix of k×k[
According to eqn "09#\

ab � 1SsX 5m

l¦1m
"82#

Therefore\ the ratio "EI#e}:Is in eqn "63# is a multiple of Young|s modulus E and also a function of
Poisson|s ratio n and shape factor Ss[ Denote "EI#"k#

eff as the value of "EI#e} in eqn "63# including the
_rst k terms of an and a¹n solved from eqns "80# and "81#[ The ratios "EI#"0#

eff :"EI#"49#
eff and

"EI#"1#
eff :"EI#"49#

eff are plotted in Fig[ 7 for the varied n and Ss[ This _gure shows that the di}erence
ratio between "EI#"1#

eff and "EI#"49#
eff is close to 9[90 and the di}erence ratio between "EI#"0#

eff and
"EI#"49#

eff is smaller than 9[94\ which indicates the convergence of and "EI#"k#
eff is very fast and we can

employ only the _rst terms of an and a¹n to approximate "EI#e} for an error smaller than _ve percent[
The explicit form of "EI#"0#

eff is derived as

"EI#"0#
eff

Is

� 1m¦l−
2l1

l¦m $
ab−tanh "ab#

"ab#2 %¦
2l

k $
G00f0¦`0

0−F00G00

−00−
tanh "b0b#

b0b 1
F00`0¦f0
0−F00G00%

"83#

The values of tilting sti}ness calculated from eqn "83# are compared with the _nite element
solution and the {approximate pressure| solution "Koh and Kelly\ 0876# in Fig[ 8 for Ss � 1 and
Ss � 19[ In the _nite element analysis\ the square layer is modeled by eight!node solid elements
with incompatible bending modes[ The _gure reveals that the tilting sti}ness calculated from eqn
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Fig[ 7[ Convergence of solution to the tilting sti}ness of a square layer[

"83# is extremely close to the _nite element solution and there are some deviations in the {approxi!
mate pressure| solution[

When the layer|s material is nearly incompressible\ ab becomes in_nitesimal[ Applying the
following approximation

tanh "ab#
ab

¼ 0−
0
2

"ab#1¦
1
04

"ab#3 "84#

in eqn "83#\ the tilting sti}ness of incompressible material for the square shape can be solved as

"EI#"0#
eff

Is

� 2m"0[022¦9[6502S1
s # "85#

In the _rst 49 terms of an and a¹n are considered in eqn "63#\ formula for the tilting sti}ness of an
incompressible layer is

"EI#"49#
eff

Is

� 2m"0¦9[6393S1
s # "86#

which is close to the previously published results "Gent and Meinecke\ 0869^ Kelly\ 0882#[
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Fig[ 8[ E}ective tilting sti}ness of a square layer[
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5[ Conclusion

Based on the two kinematic assumptions\ i[e[ horizontal planes remain planar and vertical lines
become parabolic after deformation\ the tilting sti}ness of elastic layers bonded between rigid
plates are derived through theoretical approach for the layers of in_nite!strip\ circular and square
shapes[ For the in_nite!strip and circular shapes\ the derived tilting sti}ness are expressed in close
forms[ For the square shape\ the derived tilting sti}ness is expressed in a series form\ of which the
coe.cients must be solved by numerical calculation[ However\ a simpli_ed close form is also
shown to provide good approximation for the tilting sti}ness of the square shape[

The tilting sti}nesses calculated by the derived formulae are close to the solutions of the _nite
element analysis for an extensive range of shape factor and Poisson|s ratio[ It is also found that
when the values of shape factor and Poisson|s ratio are high the di}erence between the tilting
sti}ness solved by the approach proposed in the present paper and the {approximate pressure|
solution is small[ For the in_nite!strip shape\ the tilting sti}ness calculated by the formula derived
in the present paper is extremely close to the solution of Lindley "0868b#[ However\ the formula
presented herein has a form more compact than the previously published solution[
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