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Abstract

A theoretical approach to determine the tilting stiffness of an elastic layer bonded between rigid plates is
presented and then applied to derive the formulae of tilting stiffness for layers of infinite-strip, circular and
square shapes. Based on two kinematics assumptions, the governing equations for the mean pressure are
established from the equilibrium equations and the bulk modulus equation. Satisfying the stress boundary
conditions, the pressure functions are solved and the formulae for tilting stiffness are derived. The tilting
stiffnesses calculated from these formulae are extremely close to the results obtained from the finite element
method for an extensive range of shape factor and Poisson’s ratio. © 1999 Elsevier Science Ltd. All rights
reserved.

1. Introduction

The technique of laminated elastomeric bearing has many uses in structural design, such as
thermal expansion bearings for highway bridges and isolated bearings to reduce seismic response
of buildings. A laminated elastomeric bearing consists of sheets of elastomer bonded to interleaving
steel plates. When an elastic layer is bonded between two rigid plates, the restricted lateral expansion
of the bonded surfaces of the elastic layer results in higher compression stiffness than an unbonded
elastic layer. Thus, laminated elastomeric bearing provides high vertical rigidity to sustain gravity
loading, while still providing the same horizontal flexibility of an unbonded elastomer.

Using approximate theoretical analyses, Gent and Lindley (1959) derived the compressive
stiffness of an incompressible elastic layer bonded between rigid plates for infinite-strip shape and
circular shape. Subsequently, Gent and Meinecke (1970) extended this method to analyze the
compressive stiffness and tilting stiffness of incompressible elastic layers for square and other
shapes. These approximate analyses are based on two kinematics assumptions and one stress
assumption, which are (i) planes parallel to the rigid bonding plates before deformation remain
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planar after loading; (ii) lines normal to the rigid bonding plates before deformation become
parabolic after loading; (iii) the normal stress components in all three directions can be approxi-
mated by the mean pressure. The solutions are obtained from the superposition of two stages: (i)
the elastic layer is first deformed between unbonded rigid plates; (ii) shear stresses are then applied
to restore the top and bottom surfaces of the elastic layer to the bonded positions.

Although rubber can be treated as incompressible in some analyses, the assumption of incom-
pressibility tends to overestimate the compressive stiffness and tilting stiffness of the bonded rubber
layer when the layer’s shape factor (defined as the ratio of the one bonded area to the force-free
area) is high. Kelly (1993) developed a theoretical approach to derive the compressive stiffness and
tilting stiffness considering the effect of bulk compressibility. Based on the above three assumptions
and two-stage deformations, the relation between mean pressure and volume strain is reduced to
a partial differential equation of the pressure, from which the compressive and tilting stiffnesses,
including the influence of volume change, are derived. The solutions, referred to as ‘approximate
pressure’ solutions here, are available for the layers of infinite-strip shape (Chalhoub and Kelly,
1991), circular shape (Chalhoub and Kelly, 1990) and square shape (Koh and Kelly, 1987). These
solutions are accurate for layers of high shape factor and a material of Poisson’s ratio between
0.49 and 0.5, e.g. rubber.

Lindley (1979a) applied an energy method to derive the compressive stiffness of the infinite-strip
and circular shapes as well as the tilting stiffness of the infinite-strip shape (Lindley, 1979b). In
addition to the forementioned two kinematics assumptions, he also postulated that the volume
strain has a parabolic distribution across the plane of the layer. These solutions are accurate for
the material of any Poisson’s ratio.

The authors of this paper have developed a pressure approach to derive the compressive stiffness
of a bonded elastic layer in infinite-strip, circular and square shapes (Tsai and Lee, 1998). This
approach is a direct solution, not a two-stage solution, and relies on the only two kinematics
assumptions that horizontal planes remain planar and vertical lines become parabolic after loading.
Partial differential equations for the pressure are initially derived from the equilibrium equations
and the bulk modulus equation. By satisfying the stress boundary conditions of the layers, the
pressure functions are then solved, from which the compressive stiffnesses are derived. The derived
compressive stiffnesses are shown to be extremely close to the results of finite element analysis for
any value of Poisson’s ratio and shape factor. In this paper, we apply the same pressure approach
to derive the tilting stiffness of bonded elastic layer of infinite-strip, circular and square shapes and
compare the derived results with the finite element solutions and the results published previously.

2. Governing equations

A layer of linearly elastic, homogeneous and isotropic material is bonded between two rigid
plates as shown in Fig. 1. A rectangular Cartesian coordinate system (x, y, z), is established by
locating the origin at the center of the layer and the xy plane in the middle plane of the layer. The
layer has a thickness  and an area A. Let u, v and w represent the displacements in the x, y and z
coordinate directions, respectively. As shown in Fig. 2, the top and bottom rigid plates rotate
about the y axis to form an angle ¢. Because the surfaces of the layer are perfectly bonded to rigid
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Rigid plates

Elastic layer ——/
Fig. 1. Elastic layer bonded between rigid plates.

plates, the deformation of the elastic layer is symmetric to the xy plane. The displacements are
assumed to have the form

— 1 4722 i 2 1

M(X,y,Z)—M(X,y)( - Z2 >_2pz ( )
4 2

o(x..2) = 0(x.) (1 - f) @)

3)

1
w(x, y,z) = —xz
Y p

where p = t/¢ is the radius of curvature of the rotation. Equations (1) and (2) satisfy the assumption
that the vertical lines become parabolic. The last term in eqn (1) arises from the deformation of
pure bending. Equation (3) represents the assumption that planes parallel to the rigid plates remain

planar.
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Fig. 2. Deformed shape of a tilted layer.
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For an isotropic elastic material, the mean pressure p has the following relation with dis-
placements

p(xa Y, Z) = - K(u,x+ U,y+ W,:) (4)

where x is the bulk modulus and the commas imply partial differentiation with respect to the
indicated coordinates. The equilibrium equations in the x and y coordinate directions may be
combined (Tsai and Lee, 1998) to become

A

4t u
(u,x + U,y),y\‘x + (u,x + U,y),yy + (l/l\ + U,y),z: = W (P\\ +P})) (5)

in which A and u are Lamé’s constants. Substituting the displacement assumptions in eqns (1)—(3)
into eqns (4) and (5) and integrating the resulting equations through the thickness produces

i, = oS4 s (6)

u,x U,y - 2 p K p
and

2. o g8 At .

g [(u,x + U,y)..\’.\' + (u,x + U,)r’),yy] - ? (u,x + U,y) = W (p,xx +p,yy) (7)
where p is the effective pressure defined as

1 (2
lj(x’y):lj p(xayaz)dz (8)
—1t/2

The governing equation for the effective pressure is obtained by substituting eqn (6) into eqn (7),
K
p_,xx +ﬁ,y_,v - 20(2]5 = 20(2 ; X (9)

in which o is defined as

TN PG4 2p) (10

Equation (9) is solved by satisfying the boundary conditions so that the stresses are free on the
unbonded surfaces of the elastic layer. In the ‘approximate pressure’ solution, the differential
equation is similar to eqn (9), but the coefficient « is different; the boundary conditions are assumed
as p(x, y) = 0 on the stress-free surfaces.

According to the elementary beam theory, the effective tilting stiffness of the layer is defined as

(El)cff = pJ\ 6:zx dx dy (1 1)

A

where the integration represents the total applied moment and &.. is the effective vertical stress
defined as



H.-C. Tsai, C.-C. Lee|/International Journal of Solids and Structures 36 (1999) 2485-2505 2489
Z

Fig. 3. Dimensions of an infinite-strip layer.

1 (12
6'ZZ=J 0..dz (12)

t —1t/2

Using the following stress expression for the vertical stress,
A
0., = — ;p+2iuw,z (13)

the effective tilting stiffness becomes

A
(EDor = 2u,— ’;J xp(x, y) dxdy (14)

A

where 1, = [, x> dxdy is the moment of inertia of the cross-section area about the y axis.

3. Layer of infinite-strip shape

The infinite-strip layer shown in Fig. 3 has a width of 25 and a thickness of 7. The corresponding
shape factor is S; = b/t. The moment of inertia for the unit length of strip is I, = 2b*/3. If the y
coordinate direction is attached to the infinite-long side, the displacement component v vanishes
and the layer is in plane-strain parallel to the xz plane. The governing equation for the effective
pressure in eqn (9) becomes

1
P— 0P = ;o‘cz;cx (15)

in which & satisfies the relation
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B} [ 3u
ab =285, o (16)

The normal stress o, in the plane-strain state can be expressed (Tsai and Lee, 1998) as

A+2u

G S | 17
Oy - P 2w, (17)

By substituting the displacement assumption in eqn (3) into the above equation and integrating
the resulting equation through the thickness, the boundary condition at x = b, ., = 0, yields

o é 2UK
pb) = — p(Hzﬂ) (18)

Satisfying the above boundary condition, the function f(x) can be solved from eqn (15), as below

b J.sinh (g@x) X
SN _ D X 1
P =) [(ﬂu 1 240) sinh (ab) b} (19
Substituting the above equation into eqn (14) yields
(EDeir , A 3 ab
A R W by \tanh (a5) ! (20)

which is a multiple of Young’s modulus £ and also a function of Poisson’s ratio v and shape factor
S

Figure 4 plots the variation of the tilting stiffness calculated from eqn (20) with respect to v for
S; =2 and §; = 20. Also plotted in the figure is the finite element solution where the infinite-strip
layer is modeled by eight-node isoparametric plane-strain elements. The figure shows that the
tilting stiffness calculated by eqn (20) is extremely close to the finite element solution.

The formula derived by Lindley (1979b) for the tilting stiffness of an infinite-strip layer can be
expressed as

( L4 (aby
p by 21
PRI I TR I ) 0 for @b < /15
(ED o A+2p 15 |
Dar _ | 1+ 5@ @1

1

J (2.656 0.0536 9.752 11.25
2u+i|1— + — + forab > /15
L [ i+2u< " @y @) @b ﬂ
This formula is similar to eqn (20) except for the function of @b in the parentheses. Figure 4 shows
that the curve of eqn (21) is almost the same as the curve of eqn (20). However, the expression in
eqn (20) is more compact that eqn (21).

The ‘approximate pressure’ solution derived by Chalhoub and Kelly (1991) is



(EI),, /EI,

H.-C. Tsai, C.-C. Lee|/International Journal of Solids and Structures 36 (1999) 2485-2505

3.0

(El).q/El

1.0

1000.0

100.0

10.0

1.0

0.0

Poisson's ratio v

0.45 0.195 0.4[995

| 0.499995

0.491995

Equation (20)
Chalhoub and Kelly (1991)
Lindley (1979)

Finite Element

o
o

1.0 2.0 3.0 4.0 5.0
log[1/(1-2v)]
(a) Si=2

Poisson's ratio v

0.“1,95 0.4|995 0.491995 0.499995

LIt

1

J—

[ EEEE

1 llllllll

Equation (20)

Chalhoub and Kelly (1991)
Lindley (1979)

o Finite Element

1.0 2.0 3.0 4.0 5.0
log[1/(1-2v)]
(b) Si=20

Fig. 4. Effective tilting stiffness of infinite-strip layer.
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Fig. 5. Dimensions of a circular layer.

(EDeir ] @

in which

3
gb = 28, /?“ (23)

As shown in Fig. 4, the ‘approximate pressure’ solution is accurate only when the layer has high
shape factor and the material has Poisson’s ratio greater than 0.45.

If the layer’s material is nearly incompressible, @b becomes infinitesimal. By applying the
following approximation

ab
tanh (ab)

in eqn (20), the effective tilting stiffness of incompressible material for the infinite-strip layer is
obtained as

(E;)eff _ 4 <1 N ;Sf) -

1

1 1
~ 14 5 (@) — 4o (ab)’ (24)

4. Layer of circular shape

The circular layer shown in Fig. 5 has a radius of » and a thickness of 7. The corresponding
shape factor is S, = b/(2¢) and the moment of inertia for the circular area is I, = nb*/4. A cylindrical
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polar coordinate system (r, 6, z) is established with the origin at the center of the layer. The rigid
plates on the top and bottom of the layer rotate about the axis in the direction of 6 = n/2. Denote
u, v and w as the displacements along the r, § and z directions, respectively. Applying coordinate
transformation, the displacement assumptions in eqns (1)—(3) become

4z* 1
u(r,0,2) = a(r, 0) (1 - ZZ>— ~ 22cosf (26)
t 2p
0 =(r.0( 1 4z’ i 25in 0 27
v(r,0,z) =o(r,0)( 1 — 2 +2,02 sin (27)
1
w(r,0,z) = ;rz cos 0 (28)

The expression of the mean pressure in the cylindrical coordinate system is
u v
p(r,@,z)z _K<u,r+r+;+w,:> (29)
The equilibrium equation in the r direction is
u, u 1 1 3 A
2 u,rr+ — == + 7“,()()—’_ u,:z+ - U,r()_ 70,0 + W,rz = 7p,r (30)
rooop) o p? r r UK

Substituting eqns (26)—(28) into eqns (29) and (30) and integrating the resulting equations through
the thickness leads to

R PO PN I )
u.r+rv,g+ru— —2prcos —2Kp

and
i +l_ é_i_l -+L- +i_ i- _ﬁ- 32)
u,rr ru,r [2 }"2 u 2}"2 u,@(‘) er,rﬂ 2}"2 U,e—4qu,r (

Differentiating eqn (31) with respect to r and subtracting the result from eqn (32) yields

6 1 _ 1 1 3442w - 3
2 iu— 22 gt 2 Uyt 22 Up= — A Dr— 20 cos 6 (33)

After taking coordinate transformation, the governing equation for the effective pressure in eqn
(9) becomes
1 1 _
r

Pot S Po—0p =0
r

Pt rcos 6 (34)

=

where a satisfies the relation
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[ 3u
ab = 48,
ab S, T+ 2 (35)

The effective pressure is symmetric to the r axis at § = 0 and antisymmetric to the r axis at § = n/2,
1.e.

p(r,0) = p(r, =0) = —p(r,n—0) (36)

To satisfy the above conditions, the solution of eqn (34) has the following expression
P 0) = — %rcos@+ S AL, (@) cos (2n—1)0 37)
n=1

where I, is the modified Bessel function of the first kind of order n and A, is the constants to be
determined. By taking coordinate transformation and applying eqn (37), the effective tilting
stiffness in eqn (14) becomes

. 420
(EDeir = 1| A+2u—A,— S I,(ab) (38)
Kab

which indicates that, to obtain the tilting stiffness, 4, is the only constant necessary to be solved.

The displacement u is symmetric and v is antisymmetric with respect to the r axis at 0 = 0. Since
the effective pressure p in eqn (37) is a cosine series, eqn (31) implies that i can be expressed as a
cosine series

a(r,0) = Y a(r)cos 2n—1)0 (39)

n=1

and 7 as a sine series
o, 0) = Y o) sin 2n—1)0 (40)
n=1
where @ and 8" are the amplitudes of the nth term in & and &, respectively. Substituting eqns
(37), (39) and (40) into eqn (31) yields

1 1 3
RO SR ¢ D T4 ) B Z
i, + rv + pL 2KA111(cxr) (41)
Similarly, eqn (33) gives
1 6 1 1 3(A+2w) 1 34

L P g gy D) = T ST () — — T.(57) | —

<2r2 " z2> YT <” e ) aue [“I(’W) o (W)} 4pp “

The boundary conditions are r = b give
A

G, = — ;p+2,uu,, =0 (43)

and
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Uy v
to= (" e, ) =0 (44)

Substituted by eqns (26) and (27) and integrated through the thickness, eqns (43) and (44) become

34
7.0.0) =, p(b.0) (45)
and
£,(b.0) = 1 [7(6,0) ~ (5. )] (46)

Substituting eqns (37), (39) and (40) into the above two equations yields

3 3b
Ay — o ShY_
w(b) = oA~ 7
and
1
V(b)) = b [0V(b)+aV(b)] (48)

Since the rigid plates rotate about the r axis at § = =/2, it is reasonable to assume #(b, +7/2) = 0
which indicates

#(b) = 0 (49)

The expression of #"(h) can be derived by substituting eqns (47) and (49) into eqn (41) for r = b.
Then, by substituting a"(b), #"(b) and #(b) into eqn (42) for r = b, A, is solved as

24bKkAS:
A4, = 5 (50)
p(A+2p)[2(1+128:)1,(ab) — ably(ab)]
Substituting the above equation into eqn (38) leads to
E 22 bl (ab)—21,(ab
( I)eff: il 1=~ ably(ab) 1(@b) (51)
1. K ) 2(1 + 1281, (ab) — ably(ab)

The variations of tilting stiffness with respect to v, as calculated from eqn (51), are compared
with the finite element solution and the ‘approximate pressure’ solution (Chalhoub and Kelly,
1990) in Fig. 6 for S, = 2 and S, = 20. In the finite element analysis, the circular layer is modeled
by eight-node solid elements with incompatible bending modes. The figure shows that the tilting
stiffness calculated by eqn (51) is extremely close to the finite element solution, whereas the
‘approximate pressure’ solution is accurate only when the layer has high shape factor and Poisson’s
ratio greater than 0.45.

When the layer’s material is nearly incompressible, @b tends to infinitesimal and the following
function of @b in eqn (51) may be approximated by
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Fig. 6. Effective tilting stiffness of circular layer.
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Zz

Fig. 7. Dimensions of a square layer.

ably(ab) _
21,(ab) ~

1 ~7:\2 1 ~7\4
1+§(ocb) —@(ab) (52)

Consequently, the effective tilting of incompressible material for the circular shape is

(E?““ = 1(3.5+252) (53)

5. Layer of square shape

The elastic layer of square shape shown in Fig. 7 has a side length of 26 and a thickness of .
The corresponding shape factor is S; = b/(2¢) and the moment of inertia for the square shape is
I, = 4b*/3. The boundary conditions at x = b give

A
Oxx = — ;p—i_z:uu‘c =0 (54)

and
Ty = W, +v,) =0 (55)

Substituting eqns (1) and (2) into the above equations and integrating the results through the depth
yields
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p(b,y) = ?fﬂ,x(b,y) (56)
and
a,(b,y)+0.(b,y) =0 (57)
Similarly, at y = b, the boundary conditions
A
0, = — ;p+2,uv,y =0 (58)

and 7, = 0 leads to

4ux

p(x,b) = EYE

,(x,b) (59)

and
i, (x,b)+0(x,0) =0 (60)

The distribution of the effective pressure is derived by solving the partial differential equation
in eqn (9). The particular solution of eqn (9), ,, is

_ K
po= (61)

while the complementary solution of eqn (9), ., is solved by the method of separation of variables.
By defining p(x, y) = X(x)¥(y), the functions X and ¥ must satisfy the following relation
X' —o*X Y —a?Y

e =—y5 =C (62)

where C is a constant. If p,, 5, and p_ are denoted as the solution of p. when C = 0, C > 0 and
C < 0, respectively, the complete solution of 5 becomes

p(xay) :pp(x’y)+p0(x:y)+ﬁ+(xay)+ﬁ—(x’y) (63)

When the rigid bonding plates rotate about the y axis, the effective pressure acting on the square
layer is symmetric about the x axis and anti-symmetric about the y axis, i.e.

px,y) = plx, =y) = =p(=x,) (64)

By substituting eqn (56) at y = b and eqn (59) at x = b into eqn (6), the effective pressure on the
corner is found as

_ bk
p(b,b) = — p(iw) (65)

If the following conditions on the corners are set
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p(b,b) =p_(b,b) =0
eqns (65) and (61) imply

b/ Jx
po(b,b) = —| -
Po(b, D) P<A+H>

The function jy(x, y) can be solved by satisfying the conditions in eqns (64) and (67)

é Ax "\ sinh (ax) cosh (ay)
o \ A+ u ) sinh (ab) cosh (ah)

Po(x,y) =
To satisfy eqns (64) and (66), g, has the expression
po(x.3) = T Aysinh (8,005 ()
with

2n—1
B, = /20 +72; yn:(nzb)n n=12,...,0

and p_ has the expression
p(x,y)= ) A,sin(7,x)cosh(B,y)
n=1
with

— nm
ﬁnz\,2oc2—|—)7,%; ’)717:? n:1,2,,...,OO

where A4, and A, are the constants to be determined.
Consequently, the effective pressure defined in eqn (63) has the following expression

) B é x N /A sinh (ax) cosh (o)
plx,y) = Kp b ' A+ sinh (ab) cosh (xb)

+ i [4, sinh (B,x) cos (y,) + A, sin (7,x) cosh (B,)]

Substituting the above equation into eqn (14) produces

(ED)o 32 [ocb —tanh (ocb)} 3.z [_ < tanh (ﬁ,zb))]
— a,—a,|1—

2t i— + e
IS K /L'+:u“ (Ofb)3 K I’IZI ﬂnb

where a, is a multiple of A4, defined as

2499

(66)

(67)

(68)

(69)

(70)

(71)

(72)

(73)

(74)
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_p , cosh(B,b)sin(y,b)
“= T B D) 7

and 4, is a multiple of 4, defined as

P /T sinh (B,b) cos (7,,b)

b (B.b)(7.b)

To find a, and a,, substitute the expression of 5(b, y) as obtained from eqn (73) into eqn (56) to
find @ (b, y). Then, substituting i (b, y) and p(b, y) into eqn (6) with x = b produces

3bA[ A42u\cosh ()] 3(A+2p) &
i~ e | e Asinh (11203 1) )

(76)

o,(b,y) =

Also, substituting the expressions of j(x, b) as obtained from eqn (73) into eqn (59) produces

3bA[ X 2\ sinh (ax) 3.z
0,(x,b) = 4o _— 5T </L+M> sinh (ocb)} Z A, cosh (B,b) sin (7,x) (78)

Equations (77) and (78) indicate

3bA X sinh (ex) (A4 2p)\ sinh (ox) cosh (ay)
0%, y) = 4p,u|: b T~ sinh (ab) _< It > sinh («b) cosh (ocb)}
3 A+2 31
( 4—’:11 W s Z A, sinh (f,x) cos (y,y)+ 4ITK Z A, cosh (B,y)sin (7,x) (79)

The expressions for #(x, y) can be derived by integrating the above equation with respect to y and
applying the condition #(x,0) = 0

By substituting the derived #(x, y) and j(x, ) in eqn (73) into eqn (6), the expression for @ _(x, )
is derived and then is integrated with respect to x to obtain

3b [x*  2cosh (o) N 4\ cosh (ax) cosh (o)
4up | 2b ~ asinh (axb) A+ u ) asinh (ab) cosh (ab)

a(x,y) =

4:un1ﬂ

where f(y) represents a function of y, which can be determined by assuming that the layer’s edge
at x = b remains straight after deformation, i.e., @(b, y) is a constant value independent of y.
Substituting the derived expressions of i(x, y) and #(x, y) into eqn (57) produces

30 &4 A+2u\ 4, B _
+— [cosh(ﬂ”x)cos(/,,y)ﬁ-( 7 >7cos(y,,x)cosh(ﬂ,y)}—i—f(y) (80)

A+2u & f ) A& w
+2u ,,Z‘l |:Anfncosh (B,b) sin (y,,y)} - n;l [ ;_” sinh (B,y) cos (”/,,b)}

_Abl N 2oy A+ 2\ sinh (ay) 81)
o b tanh(ab) \ A+p /sinh(ab) (

K




H.-C. Tsai, C.-C. Lee|/International Journal of Solids and Structures 36 (1999) 2485-2505 2501

Multiplying both sides of the above equation by sin (y,,y) and integrating from y = —bto y =5
gives

a, = i F,a,+f, m=12 ..., 00 (82)
in which
" \A+2u) (B,6)1(B.b)? + (7,,b)] tanh (B,b)

and

[ 2K ab 1 _ tanh (ab) 1 b 2_ u
= <i+2u> [tanh(ab)} GorGby| . <o<b )2 <<Vmb> i+ﬂ> 9

Vb

Similarly, substituting the derived expressions of #i(x, y) and #(x, y) into eqn (60) produces

S A, sin (,0) [V” cosh (B,b)— (V” LA ﬁ") cosh (ﬁ,,x)}

n=1 ﬁn ﬁn j’ Vn
© - A+2 7 A+2
~Y A,sinh (ﬁnb)[ J; & {;"cos(«ynb)—<[y?”+ ’“J; & ?)cos (y-nx)}
n=1 v n n n

b [ 2u cosh (ax) 5 bcosh(ccx) 2/1—1-/1} 85)

= pic| 2+ pcosh (@)~ X sinh (ab) T At p

Multiplying both sides of the above equation by cos (7,,x) and integrating from x = —btox = b
gives

c_lm = z Gmnan+gm m = 15 27 ey 0 (86)

n=1
in which
2
(b) + (1 + j‘) (B.bY
" ﬁnb

(B.b)>+(7,,b)> .5y 4+ <1 N 2)‘u> 3.5 tanh (f,,b)

(87)

mn —

and
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In = —4x [ (ab)? } [1 _ 4 tanh (ocb)] .
(7.,0)° + <1 + 2}”> (B, by LTwb) + (ab)” Atp ob

Approximated values of a, and a, may be solved from eqns (82) and (86) if a finite upper bound
of m and n, say k, replaces the infinity in these equations. Denote a and a be the vectors formed
by a, and a,, respectively, of the first k terms. Equations (82) and (86) can be replaced by matrix
forms

a— Fa+f (89)
i=Gatg (90)

where F and G are the matrices of k£ x k in which the elements F,,, and G,,, are defined in eqns (83)
and (87), respectively; f and g are the k& dimensional vectors in which the elements £,, and g,, are
defined in eqns (84) and (88), respectively. From eqns (89) and (90), a and a are solved as

a=(I1-FG) '(Fg+f) 91)
and
a=G(I-FG) '(Fg+0+g (92)

where I is the unit matrix of k x k.
According to eqn (10),

ou
A+2u

oab = 28, (93)
Therefore, the ratio (El).4/1 in eqn (74) is a multiple of Young’s modulus £ and also a function of
Poisson’s ratio v and shape factor S,. Denote (EN%) as the value of (EI).; in eqn (74) including the
first k terms of a, and a, solved from eqns (91) and (92). The ratios (EDY/(EDSG and
(EDR/(EDS? are plotted in Fig. 8 for the varied v and S,. This figure shows that the difference
ratio between (ENS! and (EDS” is close to 0.01 and the difference ratio between (EI){} and
(EDSGY is smaller than 0.05, which indicates the convergence of and (EI%) is very fast and we can
employ only the first terms of @, and @, to approximate (El).; for an error smaller than five percent.
The explicit form of (ED} is derived as

(EDG 372 [ab—tanh (ab)} N M[G, i+, _<1 _tanh (ﬁlb)> Fingi+/, }

=2u+A—
I i At (ab)? k| 1-F,Gy, Bib 1-F,Gyy

94)

The values of tilting stiffness calculated from eqn (94) are compared with the finite element
solution and the ‘approximate pressure’ solution (Koh and Kelly, 1987) in Fig. 9 for S, = 2 and
S, = 20. In the finite element analysis, the square layer is modeled by eight-node solid elements
with incompatible bending modes. The figure reveals that the tilting stiffness calculated from eqn
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Poisson's ratio v
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log[1/(1-2v)]

Fig. 8. Convergence of solution to the tilting stiffness of a square layer.

(94) is extremely close to the finite element solution and there are some deviations in the ‘approxi-
mate pressure’ solution.

When the layer’s material is nearly incompressible, ab becomes infinitesimal. Applying the
following approximation

tanh (ab) N

1 , 2 .
b 1— g(ocb) + TS(ocb) (95)

in eqn (94), the tilting stiffness of incompressible material for the square shape can be solved as

(ED
I

S

= 3u(1.133+0.761352) (96)

In the first 50 terms of a, and @, are considered in eqn (74), formula for the tilting stiffness of an
incompressible layer is
(EDG”
I

= 3p(140.740452) 97)

which is close to the previously published results (Gent and Meinecke, 1970; Kelly, 1993).
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Poisson's ratio v
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Fig. 9. Effective tilting stiffness of a square layer.
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6. Conclusion

Based on the two kinematic assumptions, i.e. horizontal planes remain planar and vertical lines
become parabolic after deformation, the tilting stiffness of elastic layers bonded between rigid
plates are derived through theoretical approach for the layers of infinite-strip, circular and square
shapes. For the infinite-strip and circular shapes, the derived tilting stiffness are expressed in close
forms. For the square shape, the derived tilting stiffness is expressed in a series form, of which the
coefficients must be solved by numerical calculation. However, a simplified close form is also
shown to provide good approximation for the tilting stiffness of the square shape.

The tilting stiffnesses calculated by the derived formulae are close to the solutions of the finite
element analysis for an extensive range of shape factor and Poisson’s ratio. It is also found that
when the values of shape factor and Poisson’s ratio are high the difference between the tilting
stiffness solved by the approach proposed in the present paper and the ‘approximate pressure’
solution is small. For the infinite-strip shape, the tilting stiffness calculated by the formula derived
in the present paper is extremely close to the solution of Lindley (1979b). However, the formula
presented herein has a form more compact than the previously published solution.
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